جبرهای باناخ گسترش یافته مدولی و(o t) میانگین پذیری

پایان نامه
چکیده

در این رسالهابتدا به معرفی نوع خاصی از میانگین¬پذیری تحت عنوان (? و? )- میانگین پذیری یک جبر باناخ ، که در آن ? و? همریختی¬هایی روی آن جبر باناخ هستند ،می¬پردازیم و روابط بین میانگین¬پذیری و (? و? )- میانگین پذیری را بیان می¬کنیم ، سپس با معرفی جبرهای باناخ گسترشیافته مدولی نقش آنها را در رفتار (? و? )- میانگین پذیری یک جبر باناخ مورد بررسی قرار داده و با استفاده ازآن یک شرط لازم و کافی برای (? و? )- میانگین پذیری یک جبرباناخ را بدست می¬آوریم.

منابع مشابه

میانگین پذیری و میانگین پذیری ضعیف جبرهای باناخ گسترش یافته مدولی توسط 2- دوگان دورها

دراین پایان نامه تعاریف و قضایای مقدماتی از آنالیز حقیقی ، آنالیز تابعی و جبرهای باناخ ارائه شده است . از جبر های باناخ گسترش یافته مدولی و میانگین پذیری ضعیف آن ها صحبت کرده ایم. همچنین مفهوم جدیدی از میانگین پذیری و میانگین پذیری ضعیف برای جبرهای باناخ گسترش یافته مدولی توسط 2- دوگان دورها بررسی می شود .

15 صفحه اول

(?,?)-میانگین پذیری مدولی جبرهای باناخ

نشان می دهیم که اگر a و i هر دو u-مدول های دو طرفه ی باناخ جابجایی باشند و a میانگین پذیر مدولی و i ایده آل بسته ی دو طرفه در a باشد، آنگاه i میانگین پذیر مدولی است سپس نشان می دهیم که اگر i ایده آل دو طرفه در نیم گروه معکوس میانگین پذیر s باشد، آنگاه i میانگین پذیر است. در ادامه بیان می کنیم که اگر s نیم گروه معکوس و e مجموعه ی عناصر خودتوان s و ~/s تصویر همومورفیک گروه s باشد، یک تناظر یک به ...

میانگین پذیری ضعیف و گسترش های مدولی جبرهای باناخ

هدف از انجام این رساله مطالعه میانگین پذیری ضعیف گسترش مدولی یک جبرباناخ است. سپس برای دو عدد متفاوت n و m رابطه بین n-میانگین پذیری ضعیف و m-میانگین پذیری ضعیف را مورد بررسی قرار می دهیم. هم چنین بررسی می کنیم در چه صورت یک همریختی حافظ میانگین پذیری و n-میانگین پذیری ضعیف است.

n-میانگین پذیری ضعیف گسترش های مدولی جبرهای باناخ

در این پایان نامه مفهوم n-میانگین ضعیف را برای گسترش های مدولی جبرهای باناخ معرفی می کنیم و در ادامه به بررسی رابطه بین n- میانگین پذیری ضعیف و m-میانگین پذیری ضعیف جبرهای باناخ برای اعداد صحیح و متمایز m و n می پردازیم.

15 صفحه اول

میانگین پذیری مدولی ضعیف جبرهای باناخ مثلثی

در این مقاله a و b جبرهای باناخ یکدارند و فرض می کنیم m یک b,a- مدول باناخ یکدار باشد پرفسور فورست و مارکوس جبر باناخ مثلثی t را مورد مطالعه قرار داده و نشان داده اند که t به طور ضعیف میانگین پذیر است اگر و تنها اگر جبرهای گوشه ای a و b به طور ضعیف میانگین پذیر باشد. همجنین در این مقاله ابتدا نکاتی در مورد میانگین پذیری مدولی، نگاشت مدولی، اشتقاق مدولی و... بیان شده و سپس در رابطه با اشتقاق مدو...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023